博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
[elk]logstash的最佳实战-项目实战
阅读量:6090 次
发布时间:2019-06-20

本文共 14433 字,大约阅读时间需要 48 分钟。

重点参考:

http://blog.csdn.net/qq1032355091/article/details/52953837
不得不说这是一个伟大的项目实战,是正式踏入logstash门槛的捷径

Logstash的使用

logstash支持把配置写入文件 xxx.conf,然后通过读取配置文件来采集数据

./bin/logstash –f xxx.conf

logstash最终会把数据封装成json类型,默认会添加@timestamp时间字段、host主机字段、type字段。原消息数据会整个封装进message字段。如果数据处理过程中,用户解析添加了多个字段,则最终结果又会多出.。

Logstash的结构

Logstash由 input,filter,output三个组件去完成采集数据

如下是一个logstash的配置实例:

input {      file {          type => "log"          path => "/log/*/*.log"          discover_interval => 10          start_position => "beginning"       }  }  filter {  }   output {      elasticsearch {      index => "log-%{+YYYY.MM.dd}"      hosts => ["172.16.0.14:9200", "172.16.0.15:9200", "172.16.0.16:9200"]      }      stdout {codec => rubydebug}  }

input

input组件负责读取数据,可以采用file插件读取本地文本文件,stdin插件读取标准输入数据,tcp插件读取网络数据,log4j插件读取log4j发送过来的数据等等。

filter

filter插件负责过滤解析input读取的数据,可以用grok插件正则解析数据,date插件解析日期,json插件解析json等等。

output

output插件负责将filter处理过的数据输出。可以用elasticsearch插件输出到es,rediss插件输出到redis,stdout插件标准输出,kafka插件输出到kafka等等

trade.log日志采集。

trade.log日志采集

配置内容如下:

[ruby] view plain copyinput {      file {          type => "tradelog"          path => "/home/elk/his/trade.log*"          discover_interval => 5          start_position => "beginning"                    sincedb_path => "/home/elk/myconf/sincedb_trade.txt"          sincedb_write_interval => 15                    codec => plain { charset => "GB2312" }      }      }    filter {      grok {          match => { "message" => "%{DATESTAMP_CN:[@metadata][logdate]} .* - %{WORD:opeType}\|%{WORD:name}\|Oid: %{WORD:oid}\|IP: %{IP:ip}\|MAC: %{GREEDYDATA:mac}\|%{WORD:result}\|%{GREEDYDA         match => { "message" => "%{DATESTAMP_CN:[@metadata][logdate]} .* - %{WORD:opeType}\|%{WORD:name}\|Oid: %{WORD:oid}\|IP: %{IP:ip}\|MAC: %{GREEDYDATA:mac}\|%{WORD:result}\|"  }          match => { "message" => "%{DATESTAMP_CN:[@metadata][logdate]} .* - %{WORD:opeType}\|%{WORD:name}\|Oid: %{WORD:oid}\|IP: %{IP:ip}\|MAC: %{GREEDYDATA:mac}\|"  }              match => { "message" => "%{DATESTAMP_CN:[@metadata][logdate]} .* - %{WORD:opeType}\|IP: %{IP:ip}\|MAC: %{GREEDYDATA:mac}\|%{WORD:result}\|"  }          match => { "message" => "%{DATESTAMP_CN:[@metadata][logdate]} .* - %{WORD:opeType}\|IP: %{IP:ip}\|MAC: %{GREEDYDATA:mac}\|" }          remove_field  => "message"      }          date {          match => ["[@metadata][logdate]", "YYYY-MM-dd HH:mm:ss,SSS"]      }      }    output {      if "_grokparsefailure" not in [tags] and "_dateparsefailure" not in [tags] {          stdout {codec => rubydebug}                    elasticsearch {              index => "log4j-tradelog"              hosts => ["168.7.1.67:9200"]              manage_template => true              template_overwrite => true              template_name => "log4j-tradelog"              template => "/home/elk/myconf/tradelog_template.json"          }      }      }

input

  1. start_position:设置beginning保证从文件开头读取数据。
  2. path:填入文件路径。
  3. type:自定义类型为tradelog,由用户任意填写。
  4. codec:设置读取文件的编码为GB2312,用户也可以设置为UTF-8等等
  5. discover_interval:每隔多久去检查一次被监听的 path 下是否有新文件,默认值是15秒
  6. sincedb_path:设置记录源文件读取位置的文件,默认为文件所在位置的隐藏文件。
  7. sincedb_write_interval:每隔15秒记录一下文件读取位置

filter

日志格式如下:

2016-05-09 09:49:13,817 [] [ACTIVE] ExecuteThread: '1' for queue: 'weblogic.kernel.Default (self-tuning)' [INFO ] com.c.command.StartLogCommand.execute(StartLogCommand.java:46) - FrontPage 2016-05-09 09:49:13,928 [] [ACTIVE] ExecuteThread: '2' for queue: 'weblogic.kernel.Default (self-tuning)' [INFO ] com.c.command.EndLogCommand.execute(EndLogCommand.java:44) - FrontPageAdve|

grok插件

因为该日志中有5种格式如下,以最后几个我需要的字段为例说明:

交易名|登录名|编号|ip地址|mac地址|返回结果|异常信息  交易名|登录名|编号|ip地址|mac地址|返回结果|  交易名|登录名|编号|ip地址|mac地址|  交易名|ip地址|mac地址|返回结果|  交易名|ip地址|mac地址|

所以采用5种正则规则去匹配,logstash默认会从上到下按规则去匹配,直到匹配上为止。(日志中的多行错误信息,匹配不上,logstash会在tags字段添加”_ grokparsefailure”,所以后面输出的时候会用if条件.)

注意:5种正则规则的上下顺序,下面的规则放在上面会导致可能内容解析不全,比如源数据是:请求交易名|操作员登录名|操作员编号|ip地址|mac地址|返回结果|异常信息,如果按照“请求交易名|ip地址|mac地址。

logstash内置了很多正则匹配规则,用户可以直接调用这些规则来解析,例如%{WORD:result} 表示调用WORD规则(即识别字符串规则)来解析并最后赋值给result字段(result字段会自动创建)。

下面以第一条match规则为例来说明:

match => { "message" => "%{DATESTAMP_CN:[@metadata][logdate]} .* - %{WORD:opeType}\|%{WORD:name}\|Oid: %{WORD:oid}\|IP: %{IP:ip}\|MAC: %{GREEDYDATA:mac}\|%{WORD:result}\|%{GREEDYDATA:excep

首先行首使用DATESTAMP_CN规则来识别时间,并赋值给logdate字段名;然后.识别任意字符串(.代表任意一个字符,包括特殊字符,代表个数是任意个);然后使用WORD规则(即匹配字符串规则,不包含特殊字.。

注意:[@metadata]表示logdate这个字段在数据处理过程中只是一个临时字段,最后不会真的输出。避免了使用remove_field手动移除字段。

注意:logstash默认不支持”YYYY-MM-dd HH:mm:ss,SSS”格式的时间匹配,需要自己定义正则表达式到logstash-2.3.1/vendor/bundle/jruby/1.9/gems/logstash-patterns-core-2.0.5/patterns/grok-patterns文件:

DATE_CN %{YEAR}[./-]%{MONTHNUM}[./-]%{MONTHDAY}  DATESTAMP_CN %{DATE_CN} %{TIME}

注意:logstash的正则表达式采用ruby语言正则表达式,具体语法可以参考网上。

remove_field => "message"表示解析完成之后删除原来的 message字段,避免重复。

date插件

match => ["[@metadata][logdate]", "YYYY-MM-dd HH:mm:ss,SSS"]

logstash默认的时间字段是@timestamp,如果不设置的话,默认是数据采集时候的时间,这里我们将日志打印的时间(即解析出的logdate字段的内容)设置为@timestamp内容,方便之后kibana根据时间检索。

注意:解析出来的@timestamp会比实际时间早8个小时,这是内置utc时间格式问题,kibana页面展示的时候会根据浏览器当前时区自动转换回来,这里不作处理。

output

if "_grokparsefailure" not in [tags] and "_dateparsefailure" not in [tags] {      stdout {codec => rubydebug}            elasticsearch {          index => "log4j-tradelog"          hosts => ["134.7.1.67:9200"]          manage_template => true          template_overwrite => true          template => "/home/elk/myconf/tradelog_template.json"      }  }

前面提到过,如果grok解析失败,会在tags字段自动添加_grokparsefailure值,如果date解析失败,会在tags字段自动添加_dateparsefailure值。所以最后的输出,我们采用条件过滤掉解析失败的行内容。最终的。

elasticsearch插件

index:要导入的es索引

host:es地址,有多个节点配置多个节点
template:指定elasticsearch的mapping模板文件,如果该索引不存在,logstash会根据这个mapping模板去自动创建索引。

stdout插件

rubydebug标准输出,便于调试,可以不使用该插件。

最终解析出结果示例如下:

{        "@version" => "1",      "@timestamp" => "2016-05-09T01:44:48.366Z",            "path" => "/home/elk/e.log",            "host" => "ccc7",            "type" => "tradelog",         "opeType" => "WZQry",            "name" => "lhcsssz2",             "oid" => "abzzak",              "ip" => "192.168.44.105",             "mac" => "A1345C05-26C1-4253-8845-01CFCA8EC4FD",          "result" => "Success"  }

error.log采集

日志实例:

2016-09-29 17:13:24,184|ncid=1100343164|oid=acaatv|loginName=zhenglw1|transId=Withdraw|traceId=N/A-_A-88C4D-043|exceptType=com.intenft.exception.AppRTException|exceptCode=CORESYST_TXN_NATI到

配置文件如下:

input {      file {          path => "/home/elk/his/error.log*"          type => "errorlog"          start_position => "beginning"          discover_interval => 5                    codec => multiline {              charset => "GB2312"              pattern => "^%{DATESTAMP_CN}"              negate => true              what => "next"                  }                    sincedb_path => "/home/elk/myconf/sincedb_error.txt"          sincedb_write_interval => 15      }      }    filter {      grok {          match => { "message" => "%{DATESTAMP_CN:[@metadata][logdate]}%{GREEDYDATA:[@metadata][keyvalue]}" }          remove_field  => "message"      }          date {          match => ["[@metadata][logdate]", "YYYY-MM-dd HH:mm:ss,SSS"]      }      kv {          source => "[@metadata][keyvalue]"          field_split => "\|"          value_split => "="      }  }    output {      if "multiline" in [tags] {          stdout {codec => rubydebug}          elasticsearch {              index => "log4j-errorlog-3"              hosts => ["168.7.1.67:9200"]              manage_template => true              template_overwrite => true              template => "/home/elk/myconf/errorlog_template.json"          }      }      }

input

  1. start_position:设置beginning保证从文件开头读取数据。
  2. path:填入文件路径。
  3. type:自定义类型为tradelog,由用户任意填写。
  4. codec:multiline插件
  5. discover_interval:每隔多久去检查一次被监听的 path 下是否有新文件,默认值是15秒
  6. sincedb_path:设置记录源文件读取位置的文件,默认为文件所在位置的隐藏文件。
  7. sincedb_write_interval:每隔15秒记录一下文件读取位置

multiline插件

logstash默认读取一行内容为一个消息,因为错误日志包含堆栈信息,多行对应一个消息,所以使用该插件合并多行为一条消息。

pattern:以”YYYY-MM-dd HH:mm:ss,SSS”格式开头的匹配为一条消息。
negate:true 表示正向使用该patttern
what:匹配到的日期属于下一条消息
charset:设置文件编码
filter

grok插件

匹配日期到logdata字段,匹配剩下的所有字符串到keyvalue临时字段,”GREEDYDATA”正则表达式为”.*”

date插件

match => ["[@metadata][logdate]", "YYYY-MM-dd HH:mm:ss,SSS"]

logstash默认的时间字段是@timestamp,如果不设置的话,默认是数据采集时候的时间,这里我们将日志打印的时间(即解析出的logdate字段的内容)设置为@timestamp内容,方便之后kibana根据时间检索。

注意:解析出来的@timestamp会比实际时间早8个小时,这是内置utc时间格式问题,kibana页面展示的时候会根据浏览器当前时区自动转换回来,这里不作处理。

kv插件

source:解析前面grok获取的keyvalue字段

(比如:|ncid=1100783164|oid=acaatv|loginName=zhew1|transId=Withdraw|traceId=N/A-_A-88C4D-043|exceptType=com.inteft.exception.AppRTException|exceptCode=CORESYST_TXN_NATIVE_89042|exceptMsg= .

field_split:按”|”切分key-value对

value_split:按”=”切分key 和 value,最终切分出来key作为字段名,value作为字段值

output

output {      if "multiline" in [tags] {          stdout {codec => rubydebug}          elasticsearch {              index => "log4j-errorlog-3"              hosts => ["168.7.1.67:9200"]              manage_template => true              template_overwrite => true              template => "/home/elk/myconf/errorlog_template.json"          }      }     }

该日志有2种格式的日志,一种是单行的错误信息日志,一种是多行的包含堆栈信息的日志,这2种日志内容重复,那么只需要解析单行格式的日志。kv插件解析多行格式的日志时, tags字段里没有”multipline”值.。

elasticsearch插件

index:要导入的es索引

host:es地址,有多个节点配置多个节点
template:指定elasticsearch的mapping模板文件,如果该索引不存在,logstash会根据这个mapping模板去自动创建索引。

最终解析的结果示例如下:

{      "@timestamp" => "2016-09-29T09:14:22.194Z",        "@version" => "1",            "tags" => [          [0] "multiline"      ],            "path" => "/home/elk/stst.log",            "host" => "ci7",            "type" => "sttlog",            "ncid" => "1143164",             "oid" => "acav",       "loginName" => "zhew1",         "transId" => "MyQuery",         "traceId" => "N/A8C4E-047",      "exceptType" => "com.exception.AppRTException",      "exceptCode" => "CORESYNATIVE_82243",       "exceptMsg" => "对不起!根据账号获取客户信息错误"  }

总结:

注意:

logstash filter中的每一个插件都有add_field,remove_field,add_tag,remove_tag 4个功能。

附录:

mapping模板文件

tradelog:

{      "template": "log4j-tradelog*",      "settings": {          "index.number_of_shards": 3,          "number_of_replicas": 0      },      "mappings": {          "tradelog": {              "_all": {                  "enabled": false              },              "properties": {                  "@timestamp": {                      "type": "date",                      "format": "strict_date_optional_time||epoch_millis",                      "doc_values": true                  },                  "@version": {                      "type": "string",                      "index": "not_analyzed"                  },                  "exception": {                      "type": "string",                      "index": "analyzed"                  },                  "path": {                      "type": "string",                      "index": "not_analyzed"                  },                  "host": {                      "type": "string",                      "index": "not_analyzed"                  },                  "ip": {                      "type": "ip",                      "index": "not_analyzed"                  },                  "logger_name": {                      "type": "string",                      "index": "not_analyzed"                  },                  "mac": {                      "type": "string",                      "index": "not_analyzed"                  },                  "name": {                      "type": "string",                      "index": "not_analyzed"                  },                  "oid": {                      "type": "string",                      "index": "not_analyzed"                  },                  "opeType": {                      "type": "string",                      "index": "not_analyzed"                  },                  "priority": {                      "type": "string",                      "index": "not_analyzed"                  },                  "result": {                      "type": "string",                      "index": "not_analyzed"                  },                  "type": {                      "type": "string",                      "index": "not_analyzed"                  }              }          }      }  }

error.log

{      "template": "log4j-errorlog*",      "settings": {          "index.number_of_shards": 3,          "number_of_replicas": 0      },      "mappings": {          "errorlog": {              "_all": {                  "enabled": false              },              "properties": {                  "host": {                      "type": "string",                      "index": "not_analyzed"                  },                  "ncid": {                      "type": "string",                      "index": "not_analyzed"                  },                  "type": {                      "type": "string",                      "index": "not_analyzed"                  },                  "@version": {                      "type": "string",                      "index": "not_analyzed"                  },                  "exceptType": {                      "type": "string",                      "index": "not_analyzed"                  },                  "@timestamp": {                      "format": "strict_date_optional_time||epoch_millis",                      "type": "date"                  },                  "exceptCode": {                      "type": "string",                      "index": "not_analyzed"                  },                  "transId": {                      "type": "string",                      "index": "not_analyzed"                  },                  "priority": {                      "type": "string",                      "index": "not_analyzed"                  },                  "oid": {                      "type": "string",                      "index": "not_analyzed"                  },                  "traceId": {                      "type": "string",                      "index": "not_analyzed"                  },                  "exceptMsg": {                      "type": "string",                      "index": "analyzed"                  },                  "path": {                      "type": "string",                      "index": "not_analyzed"                  },                  "logger_name": {                      "type": "string",                      "index": "not_analyzed"                  },                  "loginName": {                      "type": "string",                      "index": "not_analyzed"                  }              }          }      }  }
你可能感兴趣的文章
C++ 模板函数
查看>>
《图解HTTP》— HTTP报文信息
查看>>
如何优雅的封装vue组件
查看>>
ANR详细介绍
查看>>
微信JS-SDK分享实践
查看>>
这款分布式配置中心,会是微服务的降维打击利器吗?
查看>>
用最简单的方式理解浏览器与node中的事件循环的区别
查看>>
Spring Cloud—加密和解密
查看>>
搭建vue环境的步骤
查看>>
iOS概念攻坚之路(三):内存管理
查看>>
设计模式系列——单例模式
查看>>
简单理解Vue中的nextTick
查看>>
DockerSwarm 集群环境搭建
查看>>
react躺坑记
查看>>
nginx 站点配置 例子
查看>>
SpringJpa分页
查看>>
Kotlin 基础-程序结构(上)
查看>>
微信小程序避坑指南
查看>>
git pull 冲突解决
查看>>
生产级幂等解决方案
查看>>